目录

[置顶]板子集合

目录
  1. 快速幂
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
long long qpow(long long base, long long power) {
    long long result = 1;
    while (power > 0) {
        if (power & 1) {
            result = result * base % 1000;
        }
        power >>= 1;//此处等价于power=power/2
        base = (base * base) % 1000;
    }
    return result;
}
  1. 高斯消元
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
const int maxn = 1001;

double mat[maxn][maxn];
int n;
int main()
{
    cin >> n;
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= n + 1; j++)
        {
            cin >> mat[i][j];
        }
    }
    int operl = 1;
    for (int i = 1; i <= n; i++)
    {
        int maxx = operl;
        for (int j = operl + 1; j <= n; j++)
        {
            if (fabs(mat[j][i]) > fabs(mat[maxx][i]))
                maxx = j;
        }
        if (mat[maxx][i] == 0)
            continue;
        for (int j = 1; j <= n + 1; j++)
        {
            swap(mat[operl][j], mat[maxx][j]);
        }
        for (int j = 1; j <= n; ++j)
        {
            if (j != operl)
            {
                double temp = mat[j][i] / mat[operl][i];
                for (int k = i + 1; k <= n + 1; ++k)
                {
                    mat[j][k] -= mat[operl][k] * temp;
                }
            }
        }
        operl++;
    }
    if (operl <= n)
    {
        while (operl <= n)
        {
            if (mat[operl++][n + 1] != 0)
            {
                cout << "-1" << endl;
                return 0;
            }
        }
        cout << "0" << endl;
        return 0;
    }
    for (int i = 1; i <= n; i++)
    {
        if (mat[i][n + 1] / mat[i][i] == 0)
            printf("x%d=0\n", i);
        else
            printf("x%d=%.2lf\n", i, mat[i][n + 1] / mat[i][i]);
    }
    return 0;
}
  1. KMP
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
memset(kmp, 0, sizeof(kmp));
ans=0;
cin >> tgt + 1 >> match + 1;
matchl = strlen(match + 1);
tgtl = strlen(tgt + 1);
for (int i = 2, j = 0; i <= tgtl; i++) {
  while (j && tgt[j + 1] != tgt[i]) j = kmp[j];
  if (tgt[j + 1] == tgt[i]) j++;
  kmp[i] = j;
}
for (int i = 1, j = 0; i <= matchl; i++) {
  while (j && tgt[j + 1] != match[i]) j = kmp[j];
  if (tgt[j + 1] == match[i]) j++;
  if (j == tgtl) {
    ans++;
    j = kmp[j];
  }
}
cout << ans << endl;
  1. BKDRHash
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

#include <bits/stdc++.h>
using namespace std;

char in[3090];
int main()
{
    cin >> in + 1;
    int len = strlen(in + 1);
    unsigned int seed = 31; // 31 131 1313 13131
    unsigned int hash = 0;
    for (int i = 1; i <= len; i++)
    {
        hash = hash * seed + in[i];
    }
    cout << hash << endl;
    return 0;
}
  1. 斜率优化DP的求斜率
1
2
3
double getSL(int i, int j) {
  return (double)1.0 * (getY(i) - getY(j)) / (getX(i) - getX(j));
}
  1. tarjan
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
void tarjan(int id)
{
	t++;
	low[id] = dfn[id] = t;
	stk[++top] = id;
	vis[id] = true;
	for (int i:s[id]) {
		if (!dfn[i]) {
			tarjan(i);
			low[id] = min(low[i], low[id]);
		} else {
			if (vis[i]) { low[id] = min(low[i], low[id]); }
		}
	}
	if (dfn[id] == low[id]) {
		sum++;
		vis[id] = false;
		col[sum]++;
		while (stk[top] != id) {
			top--;
			vis[stk[top]] = false;
			col[sum]++;
		}
		top--;
	}
}

  1. 单调队列
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
const int maxn = /*??????*/;
int que[maxn], a[maxn]; // a is the num to be pushed in

int head = 1, tail = 1;
for (int i = 1; i <= n; i++)
{
  // dp
  while (head <= tail && )
    head++;
    // dp
    while (head <= tail && )
      tail--;
      q[++tail] = i;
}

8.树链剖分的两个dfs + LCA

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
int f[maxn], d[maxn], sz[maxn], son[maxn], top[maxn], sq[maxn], rk[maxn],
    w[maxn];
int cnt;
void dfs1(int id,int fa,int depth) {
    f[id] = fa;
    d[id] = depth;
    sz[id] = 1;    //这个点本身size=1
    for(int i = head[id]; i; i = edge[i].nxt) {
        int to = edge[i].to;
        if(to == fa)
            continue;
        dfs1(to, id, depth + 1);    //层次深度+1
        sz[id] += sz[to];    //子节点的size已被处理,用它来更新父节点的size
        if(sz[to] > sz[son[id]])
            son[id] = to;    //选取size最大的作为重儿子
    }
}
void dfs2(int id,int t) {    //当前节点、重链顶端
    top[id] = t;
    sq[id] = ++cnt;    //标记dfs序
    rk[cnt] = id;    //序号cnt对应节点id
    if(!son[id])
        return;
    dfs2(son[id],t); //保证一条重链上各个节点dfs序连续
    for(int i = head[id]; i; i = edge[id].nxt) {
        int to = edge[i].to;
        if(to != son[id] && to != f[id])
            dfs2(to, to);    //一个点位于轻链底端,那么它的top必然是它本身
    }
}
int LCA(int x, int y) {
  while (top[x] != top[y]) {
    if (d[top[x]] < d[top[y]]) swap(x, y);
    x = f[top[x]];
  }
  if (d[x] > d[y]) swap(x, y);
  return x;
}

9.动态开点线段树(有大锅

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

class segtree {
 private:
  int ls[maxn], rs[maxn], minn[maxn];
  int num;

 public:
 int sum[maxn];
  void insert(int &id, int l, int r, int pos, int val) {
    if (!id) {
      minn[id] = 0x7f7f7f7f;
      id = ++num;
    }
    if (l == r) {
      sum[id] += val;
      minn[id] = pos;
      return;
    }
    int mid = (l + r) >> 1;
    if (pos <= mid) {
      insert(ls[id], l, mid, pos, val);
    } else {
      insert(rs[id], mid + 1, r, pos, val);
    }
    minn[id] = min(minn[ls[id]], minn[rs[id]]);
    sum[id] = sum[ls[id]] + sum[rs[id]];
  }
  int getSum(int x, int ql, int qr, int L, int R) {
    if (!x || L > R) {
      return 0;
    }
    if (ql == L && qr == R) {
      return sum[x];
    }
    int mid = (L + R) >> 1;
    if (qr <= mid) {
      return getSum(rs[x], ql, qr, mid + 1, R);
    } else {
      return getSum(ls[x], ql, mid, L, mid) +
             getSum(rs[x], mid + 1, qr, mid + 1, R);
    }
  }  // two different ways to write it
  int getMax(int x, int ql, int qr, int L, int R) {
    if (!x) return 0x7f7f7f7f;
    if (ql <= L && qr >= R) {
      return minn[x];
    }
  }
  int mid = (L + R) >> 1;
  int ans = 0x7f7f7f7f;
  if (qr <= mid) {
    ans = min(ans, getMax(ls[x], l, mid, ql, qr));
  } else {
    ans = min(ans, getMax(rs[x], mid + 1, r, ql, qr))
  }  // two different ways to write it

  int merge(int rootx, int rooty, int l, int r) {
    if (!rootx) return rooty;
    if (!rooty) return rootx;
    if (l == r) {
      sum[rootx] += sum[rooty];
      return rootx;
    }
    int mid = (l + r) >> 1;
    ls[rootx] = merge(ls[rootx], ls[rooty], l, mid);
    rs[rootx] = merge(rs[rootx], rs[rooty], mid + 1, r);
    if (sum[ls[rootx]] >= sum[rs[rootx]]) {
      sum[rootx] = sum[ls[rootx]];
    } else {
      sum[rootx] = sum[rs[rootx]];
    }
    return rootx;
  }
} tr;

加&无返回值的合并

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
void merge(int &rootx, int &rooty, int l, int r) {
    if (!rootx || !rooty) {
      rootx += rooty;
      return;
    }
    if (l == r) {
      sum[rootx] += sum[rooty];
      return;
    }
    int mid = (l + r) >> 1;
    merge(ls[rootx], ls[rooty], l, mid);
    merge(rs[rootx], rs[rooty], mid + 1, r);
    sum[rootx] = sum[ls[rootx]] + sum[rs[rootx]];
    return;
  }
  1. 普通线段树
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
class segtreetmp {
#define lid id << 1
#define rid id << 1 | 1
  struct treeNode {
    long long l, r;
    long long sum, lazy, maxx;
  } treeNode[maxn * 4];

  void update(long long id) {
    treeNode[id].sum = treeNode[lid].sum + treeNode[rid].sum;
    treeNode[id].maxx = max(treeNode[lid].maxx, treeNode[rid].maxx);
  }

  void down(long long id) {
    treeNode[lid].sum +=
        treeNode[id].lazy * (treeNode[lid].r - treeNode[lid].l + 1);
    treeNode[rid].sum +=
        treeNode[id].lazy * (treeNode[rid].r - treeNode[rid].l + 1);
    treeNode[lid].lazy += treeNode[id].lazy;
    treeNode[rid].lazy += treeNode[id].lazy;
    treeNode[id].lazy = 0;
  }

 public:
  void build(long long id, long long l, long long r) {
    treeNode[id].l = l;
    treeNode[id].r = r;
    if (l == r) {
      treeNode[id].sum = w[l];
      treeNode[id].maxx = w[l];
      return;
    }
    long long mid = (l + r) / 2;
    build(lid, l, mid);
    build(rid, mid + 1, r);
    update(id);
  }

  void addInterval(long long id, long long l, long long r, long long val) {
    if (treeNode[id].l >= l && treeNode[id].r <= r) {
      treeNode[id].lazy += val;
      treeNode[id].maxx += val;
      treeNode[id].sum += val * (treeNode[id].r - treeNode[id].l + 1);
      return;
    }
    if (treeNode[id].lazy) down(id);
    long long mid = (treeNode[id].l + treeNode[id].r) / 2;
    if (l <= mid) addInterval(lid, l, r, val);
    if (r > mid) addInterval(rid, l, r, val);
    update(id);
  }

  long long sumInterval(long long id, long long l, long long r) {
    long long cnt = 0;
    if (treeNode[id].l >= l && treeNode[id].r <= r) return treeNode[id].sum;
    if (treeNode[id].lazy) down(id);
    long long mid = (treeNode[id].l + treeNode[id].r) / 2;
    if (l <= mid) cnt += sumInterval(lid, l, r);
    if (r > mid) cnt += sumInterval(rid, l, r);
    return cnt;
  }

  void addPoint(long long id, long long x, long long val) {
    if (treeNode[id].l == treeNode[id].r) {
      treeNode[id].sum += val;
      treeNode[id].maxx += val;
      return;
    }
    if (treeNode[id].lazy) down(id);
    long long mid = (treeNode[id].l + treeNode[id].r) / 2;
    if (x <= mid)
      addPoint(lid, x, val);
    else
      addPoint(rid, x, val);
    update(id);
  }
  long long maxInterval(long long id, long long l, long long r) {
    long long Max = -2147483647;
    long long mid = (treeNode[id].l + treeNode[id].r) >> 1;
    if (treeNode[id].l >= l && treeNode[id].r <= r) return treeNode[id].maxx;
    if (l <= mid) Max = max(Max, maxInterval(lid, l, r));
    if(r > mid) Max = max(Max, maxInterval(rid, l, r));
    return Max;
  }
} tr;
  1. 并查集
1
int findFa(int x) { return fa[x] == x ? x : fa[x] = findFa(fa[x]); }
  1. 二分答案
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

bool check(int x)
{
    求解
    if(大于需要的值)
        return 1;
    else
        return 0;
}

int main()
{
    输入
    int l=左边界;
    int r=右边界;
    while(l<=r)
    {
        int mid=(l+r)>>1;
        if(check(mid))
            r=mid-1;
        else
            l=mid+1;
    }
    printf("%d",ans);
    return 0;
}
  1. 树状数组
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

class tree {
 private:
  int v[10010], v1[10010];

 public:
  int n;
  int lowbit(int x) { return x & -x; }
  void sing_add(int x, int y) {
    for (; x <= n; x += lowbit(x)) v[x] += y;
  }
  int getsum(int *v, int x) {
    int ans = 0;
    for (; x; x -= lowbit(x)) ans += v[x];
    return ans;
  }
  void mult_add(int l, int r, int v) {
    sing_add(l, v), sing_add(r + 1, -v);  // 将区间加差分为两个前缀加
  }

  long long getsum1(int l, int r) {
    return (r + 1ll) * getsum(v, r) - 1ll * l * getsum(v, l - 1) -
           (getsum(v1, r) - getsum(v1, l - 1));
  }
};

  1. 另一种动态开点线段树写法
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

const int N = 1000005;
class segtree {
 private:
  int sum[N * 80], maxn[N * 80], minn[N * 80];
  int ls[N * 80], rs[N * 80];
  int seg;

 public:
  void init() {
    maxn[0] = -0x7fffffff;
    sum[0] = 0;
    minn[0] = 0x7fffffff;
  }
  void newpo(int &x) {
    x = ++seg;
    ls[x] = rs[x] = 0;
    sum[x] = 0;
    maxn[x] = -0x7fffffff;
    minn[x] = 0x7fffffff;
  }
  void pushup(int x) {
    sum[x] = sum[ls[x]] + sum[rs[x]];
    maxn[x] = max(maxn[ls[x]], maxn[rs[x]]);
    minn[x] = min(minn[ls[x]], minn[rs[x]]);
  }
  void ins(int &x, int l, int r, int pos, int val) {
    if (!x) newpo(x);
    if (l == r) {
      sum[x] += val;
      maxn[x] = pos;
      minn[x] = pos;
      return;
    }
    int mid = l + r >> 1;
    if (pos <= mid)
      ins(ls[x], l, mid, pos, val);
    else
      ins(rs[x], mid + 1, r, pos, val);
    pushup(x);
    return;
  }
  int querysum(int x, int l, int r, int ql, int qr) {
    //统计区间内一共有多少数
    if (!x) return 0;
    if (ql <= l && r <= qr) return sum[x];
    int mid = l + r >> 1, ret = 0;
    if (ql <= mid) ret += querysum(ls[x], l, mid, ql, qr);
    if (qr > mid) ret += querysum(rs[x], mid + 1, r, ql, qr);
    return ret;
  }
  int querymax(int x, int l, int r, int ql, int qr) {
    //统计区间内存在的数的最大值
    if (!x) return -0x7fffffff;
    if (ql <= l && r <= qr) return maxn[x];
    int mid = l + r >> 1, ret = -0x7fffffff;
    if (ql <= mid) ret = max(ret, querymax(ls[x], l, mid, ql, qr));
    if (qr > mid) ret = max(ret, querymax(rs[x], mid + 1, r, ql, qr));
    return ret;
  }
  int querymin(int x, int l, int r, int ql, int qr) {
    //统计区间内存在的数的最小值
    if (!x) return 0x7fffffff;
    if (ql <= l && r <= qr) return minn[x];
    int mid = l + r >> 1, ret = 0x7fffffff;
    if (ql <= mid) ret = min(ret, querymin(ls[x], l, mid, ql, qr));
    if (qr > mid) ret = min(ret, querymin(rs[x], mid + 1, r, ql, qr));
    return ret;
  }
};
/*
int n, a[N], rt = 0;
xds.init();
xds.ins(rt, 1, n, a[i], 1);
xds.querysum(1, 1, n, 1, n);
xds.querymax(1, 1, n, 1, n);
xds.querymin(1, 1, n, 1, n));
*/

  1. 模拟退火
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#include <bits/stdc++.h>
using namespace std;

int calc() {
  //用dp,最短路,贪心,模拟等算法求出当前解。
}
int SA() {
  double beginT = , endT = , delT = ;
  for (double T = beginT; T > endT; T *= delT) {
    //对于序列,枚举两个数并进行交换,得出当前解
    //对于坐标,随机生成一个点进行计算
    //对于网格图,随机枚举两个格点进行交换
    //...
    if () // 当前解优于最优解
      // 更新最优解
    else if (exp(-当前 / T) * RAND_MAX < rand())  //还原之前的状态
  }
}

int main() {
  srand(rand());
  while((double)clock()/CLOCKS_PER_SEC<=0.8) SA();// 卡时
  return 0;
}

  1. Lucas + quick pow
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
int qpow(int base, int power) {
  int ans = 1;
  while (power) {
    if (power & 1) {
      ans = 1ll * ans * base % mod;
    }
    base = 1ll * base * base % mod;
    power >>= 1;
  }
  return ans;
}
int getC(int n, int m) {
  if (n < m) return 0;
  if (m > n - m) m = n - m;
  long long  s1 = 1, s2 = 1;
  for (int i = 0; i < m; i++) {
    s1 = s1 * (n - i) % mod;
    s2 = s2 * (i + 1) % mod;
  }
  return s1 * qpow(s2, mod - 2) % mod;
}
  1. DINIC
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

class DNIC {
  int dis[maxn], cur[maxn];
public:
  int T;
  int dfs(int id, int flow) {
    int maxfl = 0, fl;
    if (id == T || flow == 0) return flow;
    for (int i = cur[id]; i; i = edge[i].nxt) {
      cur[id] = i;
      int to = edge[i].to, c = edge[i].c;
      if (c && dis[to] == dis[id] + 1 && (fl = dfs(to, min(flow, c)))) {
	edge[i].c -= fl;
	edge[i ^ 1].c += fl;
	flow -= fl;
	maxfl += fl;
	if (!flow) break;
      }
    }
    return maxfl;
  }
  int bfs() {
    Set(dis, 0);
    queue<int> que;
    que.push(0);
    dis[0] = 1;
    while (!que.empty()) {
      int fnt = que.front();
      que.pop();
      for (int i = head[fnt]; i; i = edge[i].nxt) {
	int to = edge[i].to;
	if (dis[to] == 0 && edge[i].c) {
	  dis[to] = dis[fnt] + 1;
	  if (to == T) return 1;
	  que.push(to);
	}
      }
    }
    return dis[T];
  }

  int dinic() {
    int ans = 0;
    while(bfs()) {
      For(i, 0, T) cur[i] = head[i];
      ans += dfs(0, 0x3f3f3f3f);
    }
    return ans;
  }
} dd;
  1. EK
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#define maxn 250
#define INF 0x3f3f3f3f

struct Edge {
  int from, to, cap, flow;
  Edge(int u, int v, int c, int f) : from(u), to(v), cap(c), flow(f) {}
};

struct EK {
  int n, m;             // n:点数,m:边数
  vector<Edge> edges;   // edges:所有边的集合
  vector<int> G[maxn];  // G:点 x -> x 的所有边在 edges 中的下标
  int a[maxn], p[maxn];  // a:点 x -> BFS 过程中最近接近点 x 的边给它的最大流
                         // p:点 x -> BFS 过程中最近接近点 x 的边

  void init(int n) {
    for (int i = 0; i < n; i++) G[i].clear();
    edges.clear();
  }

  void AddEdge(int from, int to, int cap) {
    edges.push_back(Edge(from, to, cap, 0));
    edges.push_back(Edge(to, from, 0, 0));
    m = edges.size();
    G[from].push_back(m - 2);
    G[to].push_back(m - 1);
  }

  int Maxflow(int s, int t) {
    int flow = 0;
    for (;;) {
      memset(a, 0, sizeof(a));
      queue<int> Q;
      Q.push(s);
      a[s] = INF;
      while (!Q.empty()) {
        int x = Q.front();
        Q.pop();
        for (int i = 0; i < G[x].size(); i++) {  // 遍历以 x 作为起点的边
          Edge& e = edges[G[x][i]];
          if (!a[e.to] && e.cap > e.flow) {
            p[e.to] = G[x][i];  // G[x][i] 是最近接近点 e.to 的边
            a[e.to] =
                min(a[x], e.cap - e.flow);  // 最近接近点 e.to 的边赋给它的流
            Q.push(e.to);
          }
        }
        if (a[t]) break;  // 如果汇点接受到了流,就退出 BFS
      }
      if (!a[t])
        break;  // 如果汇点没有接受到流,说明源点和汇点不在同一个连通分量上
      for (int u = t; u != s;
           u = edges[p[u]].from) {  // 通过 u 追寻 BFS 过程中 s -> t 的路径
        edges[p[u]].flow += a[t];      // 增加路径上边的 flow 值
        edges[p[u] ^ 1].flow -= a[t];  // 减小反向路径的 flow 值
      }
      flow += a[t];
    }
    return flow;
  }
};

  1. AC自动鸡
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
class ACA {
  int tr[maxn][26], ende[maxn], fail[maxn];
  int tot;
  queue<int> que;
public:
  void insert(char *s) {
    int now = 0;
    for (int i = 1; s[i]; i++) {
      if (!tr[now][s[i] - 'a']) tr[now][s[i] - 'a'] = ++tot;
      now = tr[now][s[i] - 'a'];
    }
    ende[now]++;
  }
  void build() {
    For(i, 0, 25) {
      if (tr[0][i])
        que.push(tr[0][i]);
    }
    while (!que.empty()) {
      int fnt = que.front();
      que.pop();
      For(i, 0, 25) {
        if (tr[fnt][i]) {
          fail[tr[fnt][i]] =
            tr[fail[fnt]][i];
          que.push(tr[fnt][i]);
        } else
          tr[fnt][i] = tr[fail[fnt]][i];
      }
    }
  }
  int query(char *t) {
    int now = 0, ans = 0;
    for (int i = 1; t[i]; i++) {
      now = tr[now][t[i] - 'a'];
      for (int j = now; j && ende[j] != -1; j = fail[j]) {
        ans += ende[j];
        ende[j] = -1;
      }
    }
    return ans;
  }
  void clr() {
    Set(fail, 0);
    Set(tr, 0);
  }
} ;
  1. treap
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
class treap {
 private:
  void pushup(int x) { size[x] = size[l[x]] + size[r[x]] + w[x]; }
  void lrotate(int &k) {
    int t = r[k];
    r[k] = l[t];
    l[t] = k;
    size[t] = size[k];
    pushup(k);
    k = t;
  }
  void rrotate(int &k) {
    int t = l[k];
    l[k] = r[t];
    r[t] = k;
    size[t] = size[k];
    pushup(k);
    k = t;
  }

 public:
  int l[maxn], r[maxn], val[maxn], rnd[maxn], size[maxn], w[maxn];
  int sz, ans, rt;  // size ans root
  void insert(int &k, int x) {
    if (!k) {
      sz++;
      k = sz;
      size[k] = 1;
      w[k] = 1;
      val[k] = x;
      rnd[k] = rand();
      return;
    }
    size[k]++;
    if (val[k] == x) {
      w[k]++;
    } else if (val[k] < x) {
      insert(r[k], x);
      if (rnd[r[k]] < rnd[k]) lrotate(k);
    } else {
      insert(l[k], x);
      if (rnd[l[k]] < rnd[k]) rrotate(k);
    }
  }

  bool del(int &k, int x) {
    if (!k) return false;
    if (val[k] == x) {
      if (w[k] > 1) {
        w[k]--;
        size[k]--;
        return true;
      }
      if (l[k] == 0 || r[k] == 0) {
        k = l[k] + r[k];
        return true;
      } else if (rnd[l[k]] < rnd[r[k]]) {
        rrotate(k);
        return del(k, x);
      } else {
        lrotate(k);
        return del(k, x);
      }
    } else if (val[k] < x) {
      bool succ = del(r[k], x);
      if (succ) size[k]--;
      return succ;
    } else {
      bool succ = del(l[k], x);
      if (succ) size[k]--;
      return succ;
    }
  }

  int queryrank(int k, int x) {
    if (!k) return 0;
    if (val[k] == x)
      return size[l[k]] + 1;
    else if (x > val[k]) {
      return size[l[k]] + w[k] + queryrank(r[k], x);
    } else
      return queryrank(l[k], x);
  }

  int querynum(int k, int x) {
    if (!k) return 0;
    if (x <= size[l[k]])
      return querynum(l[k], x);
    else if (x > size[l[k]] + w[k])
      return querynum(r[k], x - size[l[k]] - w[k]);
    else
      return val[k];
  }

  void querypre(int k, int x) {
    if (!k) return;
    if (val[k] < x)
      ans = k, querypre(r[k], x);
    else
      querypre(l[k], x);
  }

  void querysub(int k, int x) {
    if (!k) return;
    if (val[k] > x)
      ans = k, querysub(l[k], x);
    else
      querysub(r[k], x);
  }
} btr;
  1. 线性基
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
struct LinearBase {
  int dat[maxl], bel[maxl];
  inline void insert(int id, int val) {
    for (int i = 30; ~i; i--)
      if (val & (1 << i)) {
        if (!dat[i]) {
          dat[i] = val, bel[i] = id;
          return;
        } else {
          if (bel[i] < id) std::swap(bel[i], id), std::swap(val, dat[i]);
          val ^= dat[i];
        }
      }
  }
  inline bool query(int val, int lim) {
    for (int i = 30; ~i; i--)
      if (val & (1 << i)) {
        if (!dat[i] || bel[i] < lim) return 1;
        val ^= dat[i];
      }
    return 0;
  }
};
  1. RBTree(LG)
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
#include <bits/stdc++.h>
using namespace std;

#define bro(x) (((x)->ftr->lc == (x)) ? ((x)->ftr->rc) : ((x)->ftr->lc))
#define islc(x) ((x) != NULL && (x)->ftr->lc == (x))
#define isrc(x) ((x) != NULL && (x)->ftr->rc == (x))

template <typename T>
class redblacktree {
 protected:
  struct Node;

  Node* _root;  ////根节点位置
  Node* _hot;   ////临时维护的节点

  void init(T);
  void connect34(Node*, Node*, Node*, Node*, Node*, Node*, Node*);
  void SolveDoubleRed(Node*);    
  void SolveDoubleBlack(Node*); 
  Node* find(T, const int);      ////允许重复的查找
  Node* rfind(T, const int);     ////不允许重复的查找
  Node* findkth(int, Node*);
  int find_rank(T, Node*);

 public:
  struct iterator;

  redblacktree() : _root(NULL), _hot(NULL) {}

  int get_rank(T);
  iterator insert(T);
  bool remove(T);
  int size();
  bool empty();
  iterator kth(int);
  iterator lower_bound(T);
  iterator upper_bound(T);
};
template <typename T>
struct redblacktree<T>::Node {
  T val;     ////节点信息
  bool RBc;  ////节点颜色,若为true,则节点为Red;否则节点为Black.
  Node* ftr;  ////父亲
  Node* lc;   ////左儿子
  Node* rc;   ////右儿子
  int s;      ////域

  Node(T v = T(), bool RB = true, Node* f = NULL, Node* l = NULL,
       Node* r = NULL, int ss = 1)
      : val(v), RBc(RB), ftr(f), lc(l), rc(r), s(ss) {}

  Node* succ() {  ////删除节点时用到的替代节点
    Node* ptn = rc;
    while (ptn->lc != NULL) {
      --(ptn->s);
      ptn = ptn->lc;
    }
    return ptn;
  }

  Node* left_node() {  ////直接前驱
    Node* ptn = this;
    if (!lc) {
      while (ptn->ftr && ptn->ftr->lc == ptn) ptn = ptn->ftr;
      ptn = ptn->ftr;
    } else {
      ptn = ptn->lc;
      while (ptn->rc) {
        ptn = ptn->rc;
      }
    }
    return ptn;
  }

  Node* right_node() {  ////直接后继
    Node* ptn = this;
    if (!rc) {
      while (ptn->ftr && ptn->ftr->rc == ptn) ptn = ptn->ftr;
      ptn = ptn->ftr;
    } else {
      ptn = ptn->rc;
      while (ptn->lc) {
        ptn = ptn->lc;
      }
    }
    return ptn;
  }

  void maintain() {  ////维护域s
    s = 1;
    if (lc) s += lc->s;
    if (rc) s += rc->s;
  }
};
template <typename T>
struct redblacktree<T>::iterator {
 private:
  Node* _real__node;

 public:
  iterator& operator++() {
    _real__node = _real__node->right_node();
    return *this;
  }

  iterator& operator--() {
    _real__node = _real__node->left_node();
    return *this;
  }

  T operator*() { return _real__node->val; }

  iterator(Node* node_nn = NULL) : _real__node(node_nn) {}
  iterator(T const& val_vv) : _real__node(rfind(val_vv, 0)) {}
  iterator(iterator const& iter) : _real__node(iter._real__node) {}
};
template <typename T>
typename redblacktree<T>::iterator redblacktree<T>::insert(T v) {
  Node* ptn = find(v, 1);
  if (_hot == NULL) {
    init(v);
    return iterator(_root);
  }
  ptn = new Node(v, true, _hot, NULL, NULL, 1);
  if (_hot->val <= v)
    _hot->rc = ptn;
  else
    _hot->lc = ptn;
  SolveDoubleRed(ptn);
  return iterator(ptn);
}

template <typename T>
void redblacktree<T>::init(T v) {
  _root = new Node(v, false, NULL, NULL, NULL, 1);
}
template <typename T>
typename redblacktree<T>::Node* redblacktree<T>::find(T v, const int op) {
  Node* ptn = _root;  ////从根节点开始查找
  _hot = NULL;        ////维护父亲节点
  while (ptn != NULL) {
    _hot = ptn;
    ptn->s += op;
    if (ptn->val > v)
      ptn = ptn->lc;
    else
      ptn = ptn->rc;
  }
  return ptn;
}

template <typename T>
typename redblacktree<T>::Node* redblacktree<T>::rfind(T v, const int op) {
  Node* ptn = _root;
  _hot = NULL;
  while (ptn != NULL && ptn->val != v) {
    _hot = ptn;
    ptn->s += op;
    if (ptn->val > v)
      ptn = ptn->lc;
    else
      ptn = ptn->rc;
  }
  return ptn;
}
template <typename T>
void redblacktree<T>::SolveDoubleRed(Node* nn) {
  while ((!(nn->ftr)) || nn->ftr->RBc) {
    if (nn == _root) {
      _root->RBc = false;

      return;
    }
    Node* pftr = nn->ftr;
    if (!(pftr->RBc)) return;  ////No double-red
    Node* uncle = bro(nn->ftr);
    Node* grdftr = nn->ftr->ftr;
    if (uncle != NULL && uncle->RBc) {  ////RR-2
      grdftr->RBc = true;
      uncle->RBc = false;
      pftr->RBc = false;
      nn = grdftr;
    } else {  ////RR-1
      if (islc(pftr)) {
        if (islc(nn)) {
          pftr->ftr = grdftr->ftr;
          if (grdftr == _root)
            _root = pftr;
          else if (grdftr->ftr->lc == grdftr)
            grdftr->ftr->lc = pftr;
          else
            grdftr->ftr->rc = pftr;
          connect34(pftr, nn, grdftr, nn->lc, nn->rc, pftr->rc, uncle);
          pftr->RBc = false;
          grdftr->RBc = true;
        } else {
          nn->ftr = grdftr->ftr;
          if (grdftr == _root)
            _root = nn;
          else if (grdftr->ftr->lc == grdftr)
            grdftr->ftr->lc = nn;
          else
            grdftr->ftr->rc = nn;
          connect34(nn, pftr, grdftr, pftr->lc, nn->lc, nn->rc, uncle);
          nn->RBc = false;
          grdftr->RBc = true;
        }
      } else {
        if (islc(nn)) {
          nn->ftr = grdftr->ftr;
          if (grdftr == _root)
            _root = nn;
          else if (grdftr->ftr->lc == grdftr)
            grdftr->ftr->lc = nn;
          else
            grdftr->ftr->rc = nn;
          connect34(nn, grdftr, pftr, uncle, nn->lc, nn->rc, pftr->rc);
          nn->RBc = false;
          grdftr->RBc = true;
        } else {
          pftr->ftr = grdftr->ftr;
          if (grdftr == _root)
            _root = pftr;
          else if (grdftr->ftr->lc == grdftr)
            grdftr->ftr->lc = pftr;
          else
            grdftr->ftr->rc = pftr;
          connect34(pftr, grdftr, nn, uncle, pftr->lc, nn->lc, nn->rc);
          pftr->RBc = false;
          grdftr->RBc = true;
        }
      }
      return;
    }
  }
}
template <typename T>
void redblacktree<T>::connect34(Node* nroot, Node* nlc, Node* nrc, Node* ntree1,
                                Node* ntree2, Node* ntree3, Node* ntree4) {
  nlc->lc = ntree1;
  if (ntree1 != NULL) ntree1->ftr = nlc;
  nlc->rc = ntree2;
  if (ntree2 != NULL) ntree2->ftr = nlc;
  nrc->lc = ntree3;
  if (ntree3 != NULL) ntree3->ftr = nrc;
  nrc->rc = ntree4;
  if (ntree4 != NULL) ntree4->ftr = nrc;
  nroot->lc = nlc;
  nlc->ftr = nroot;
  nroot->rc = nrc;
  nrc->ftr = nroot;
  nlc->maintain();
  nrc->maintain();
  nroot->maintain();
}
template <typename T>
typename redblacktree<T>::iterator redblacktree<T>::lower_bound(T v) {
  Node* ptn = _root;
  while (ptn) {
    _hot = ptn;
    if (ptn->val < v) {
      ptn = ptn->rc;
    } else {
      ptn = ptn->lc;
    }
  }
  if (_hot->val < v) {
    ptn = _hot;
  } else {
    ptn = _hot->left_node();
  }
  return iterator(ptn);
}

template <typename T>
typename redblacktree<T>::iterator redblacktree<T>::upper_bound(T v) {
  Node* ptn = _root;
  while (ptn) {
    _hot = ptn;
    if (ptn->val > v) {
      ptn = ptn->lc;
    } else {
      ptn = ptn->rc;
    }
  }
  if (_hot->val > v) {
    ptn = _hot;
  } else {
    ptn = _hot->right_node();
  }
  return iterator(ptn);
}
template <typename T>
typename redblacktree<T>::iterator redblacktree<T>::kth(int rank) {
  return iterator(findkth(rank, _root));
}

template <typename T>
typename redblacktree<T>::Node* redblacktree<T>::findkth(int rank, Node* ptn) {
  if (!(ptn->lc)) {
    if (rank == 1) {
      return ptn;
    } else {
      return findkth(rank - 1, ptn->rc);
    }
  } else {
    if (ptn->lc->s == rank - 1)
      return ptn;
    else if (ptn->lc->s >= rank)
      return findkth(rank, ptn->lc);
    else
      return findkth(rank - (ptn->lc->s) - 1, ptn->rc);
  }
}
template <typename T>
int redblacktree<T>::get_rank(T v) {
  return find_rank(v, _root);
}

template <typename T>
int redblacktree<T>::find_rank(T v, Node* ptn) {
  if (!ptn)
    return 1;
  else if (ptn->val >= v)
    return find_rank(v, ptn->lc);
  else
    return (1 + ((ptn->lc) ? (ptn->lc->s) : 0) + find_rank(v, ptn->rc));
}
template <typename T>
int redblacktree<T>::size() {
  return _root->s;
}

template <typename T>
bool redblacktree<T>::empty() {
  return !_root;
}
template <typename T>
bool redblacktree<T>::remove(T v) {
  Node* ptn = rfind(v, -1);
  if (!ptn) return false;
  Node* node_suc;
  while (ptn->lc || ptn->rc) {  ////迭代寻找真后继
    if (!(ptn->lc)) {
      node_suc = ptn->rc;
    } else if (!(ptn->rc)) {
      node_suc = ptn->lc;
    } else {
      node_suc = ptn->succ();
    }
    --(ptn->s);
    ptn->val = node_suc->val;
    ptn = node_suc;
  }
  if (!(ptn->RBc)) {
    --(ptn->s);
    SolveDoubleBlack(ptn);
  }
  if (ptn == _root) {
    _root = NULL;
    delete ptn;
    return true;
  }
  if (ptn->ftr->lc == ptn)
    ptn->ftr->lc = NULL;
  else
    ptn->ftr->rc = NULL;
  delete ptn;
  return true;
}
template <typename T>
void redblacktree<T>::SolveDoubleBlack(Node* nn) {
  while (nn != _root) {
    Node* pftr = nn->ftr;
    Node* bthr = bro(nn);
    if (bthr->RBc) {  ////BB-1
      bthr->RBc = false;
      pftr->RBc = true;
      if (_root == pftr) _root = bthr;
      if (pftr->ftr) {
        if (pftr->ftr->lc == pftr)
          pftr->ftr->lc = bthr;
        else
          pftr->ftr->rc = bthr;
      }
      bthr->ftr = pftr->ftr;
      if (islc(nn)) {
        connect34(bthr, pftr, bthr->rc, nn, bthr->lc, bthr->rc->lc,
                  bthr->rc->rc);
      } else {
        connect34(bthr, bthr->lc, pftr, bthr->lc->lc, bthr->lc->rc, bthr->rc,
                  nn);
      }
      bthr = bro(nn);
      pftr = nn->ftr;
    }
    if (bthr->lc && bthr->lc->RBc) {  ////BB-3
      bool oldRBc = pftr->RBc;
      pftr->RBc = false;
      if (pftr->lc == nn) {
        if (pftr->ftr) {
          if (pftr->ftr->lc == pftr)
            pftr->ftr->lc = bthr->lc;
          else
            pftr->ftr->rc = bthr->lc;
        }
        bthr->lc->ftr = pftr->ftr;
        if (_root == pftr) _root = bthr->lc;
        connect34(bthr->lc, pftr, bthr, pftr->lc, bthr->lc->lc, bthr->lc->rc,
                  bthr->rc);
      } else {
        bthr->lc->RBc = false;
        if (pftr->ftr) {
          if (pftr->ftr->lc == pftr)
            pftr->ftr->lc = bthr;
          else
            pftr->ftr->rc = bthr;
        }
        bthr->ftr = pftr->ftr;
        if (_root == pftr) _root = bthr;
        connect34(bthr, bthr->lc, pftr, bthr->lc->lc, bthr->lc->rc, bthr->rc,
                  pftr->rc);
      }
      pftr->ftr->RBc = oldRBc;
      return;
    } else if (bthr->rc && bthr->rc->RBc) {  ////BB-3
      bool oldRBc = pftr->RBc;
      pftr->RBc = false;
      if (pftr->lc == nn) {
        bthr->rc->RBc = false;
        if (pftr->ftr) {
          if (pftr->ftr->lc == pftr)
            pftr->ftr->lc = bthr;
          else
            pftr->ftr->rc = bthr;
        }
        bthr->ftr = pftr->ftr;
        if (_root == pftr) _root = bthr;
        connect34(bthr, pftr, bthr->rc, pftr->lc, bthr->lc, bthr->rc->lc,
                  bthr->rc->rc);
      } else {
        if (pftr->ftr) {
          if (pftr->ftr->lc == pftr)
            pftr->ftr->lc = bthr->rc;
          else
            pftr->ftr->rc = bthr->rc;
        }
        bthr->rc->ftr = pftr->ftr;
        if (_root == pftr) _root = bthr->rc;
        connect34(bthr->rc, bthr, pftr, bthr->lc, bthr->rc->lc, bthr->rc->rc,
                  pftr->rc);
      }
      pftr->ftr->RBc = oldRBc;
      return;
    }
    if (pftr->RBc) {  ////BB-2R
      pftr->RBc = false;
      bthr->RBc = true;
      return;
    } else {  ////BB-2B
      bthr->RBc = true;
      nn = pftr;
    }
  }

}